Code: 20CE2501A

III B.Tech - I Semester - Regular Examinations - DECEMBER 2022

AIR POLLUTION AND CONTROL

(Common to ALL Branches)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.				
					Marks				
	UNIT-I								
1	a)	Classify air pollutants on the basis of their	L2	CO1	7 M				
		source of generation, and give examples for							
		the same.							
	b)	Examine the effects of air pollution on	L4	CO1	7 M				
		materials and monuments.							
OR									
2	a)	Explain the scope and significance of	L2	CO1	7 M				
		studying air pollution.							
	b)	Inspect the causes, effects, and control	L4	CO1	7 M				
		measures of acid rain.							
UNIT-II									
3	a)	Construct a wind-rose diagram, and its	L3	CO2	7 M				
		types.							
	b)	Examine the impact of wind speed and	L4	CO2	7 M				
		direction in air plume dispersions with neat							
		figures.							

		OR			
4	a)	Make use of a neat sketch to explain the	L3	CO2	7 M
		Gaussian plume model and identify its			
		assumptions and applications.			
	b)	Examine the impact of moisture and relative	L4	CO2	7 M
		humidity in the dispersion of air pollutants.			
		UNIT-III			
5	a)	Explain the 'grab sampling' method for the	L2	CO3	7 M
		collection of gaseous air pollutants.			
	b)	Examine the various methods used for the	L4	CO3	7 M
		analysis of Sulphur Dioxide with figure			
		High Volume Air Sampler.			
		OR			
6	a)	Summarize the air quality emission	L2	CO3	7 M
		standards for key pollutants.			
	b)	List out all the parameters and pollutants	L4	CO3	7 M
		that can be measured and analyzed using			
		stack sampling.			
		UNIT-IV			
7	a)	Explain the principle and working of an	L2	CO4	7 M
		electrostatic precipitator, with the help of a			
		diagram.			
	b)	Distinguish between the working principles	L4	CO4	7 M
		of settling chambers and scrubbers in the			
		removal of particulate pollutants.			
		OR			

8	a)	Explain the principle and working of fabric	L2	CO4	7 M	
		filters for the control of particulate matter,				
		with the help of a diagram.				
	b)	Distinguish between the methods adopted	L4	CO4	7 M	
		by inertial separators and wet scrubbers in				
		removing particulate matter from polluted				
		air.				
UNIT-V						
9	a)	Illustrate the working and applications of an	L2	CO5	7 M	
		activated carbon adsorber for the control of				
		gaseous pollutants (Adsorption Method).				
	b)	Examine how the direct flare combustion	L2	CO5	7 M	
		method works for the control of gaseous				
		pollutants.				
OR						
10	a)	Explain any two methods in which NO _x	L2	CO5	7 M	
		gases are controlled?				
	b)	Analyze the closed collections and recovery	L2	CO5	7 M	
		systems for the control of SO ₂ gases.				